Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
1.
J Vet Intern Med ; 38(1): 135-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38180235

RESUMO

BACKGROUND: Muscular dystrophies (MDs) are a large, heterogeneous group of degenerative muscle diseases. X-linked dystrophin-deficient MD in cats is the first genetically characterized cat model for a human disease and a few novel forms have been identified. HYPOTHESIS/OBJECTIVES: Muscular dystrophy was suspected in a young male domestic shorthair cat. Clinical, molecular, and genetic techniques could provide a definitive diagnosis. ANIMALS: A 1-year-old male domestic shorthair cat presented for progressive difficulty walking, macroglossia and dysphagia beginning at 6 months of age. The tongue was thickened, protruded with constant ptyalism, and thickening and rigidity of the neck and shoulders were observed. METHODS: A complete neurological examination, baseline laboratory evaluation and biopsies of the trapezius muscle were performed with owner consent. Indirect immunofluorescence staining of muscle cryosections was performed using several monoclonal and polyclonal antibodies against dystrophy-associated proteins. DNA was isolated for genomic analyses by whole genome sequencing and comparison to DNA variants in the 99 Lives Cat Genome Sequencing dataset. RESULTS AND CLINICAL IMPORTANCE: Aspartate aminotransferase (687 IU/L) and creatine kinase (24 830 IU/L) activities were increased and mild hypokalemia (3.7 mmol/L) was present. Biopsy samples from the trapezius muscle confirmed a degenerative and regenerative myopathy and protein alterations identified by immunohistochemistry resulted in a diagnosis of a in dystrophin-deficient form of X-linked MD. A stop gain variant (c.4849C>T; p.Gln1617Ter) dystrophin was identified by genome sequencing. Precision/genomic medicine efforts for the domestic cat and in veterinary medicine support disease variant and animal model discovery and provide opportunities for targeted treatments for companion animals.


Assuntos
Doenças do Gato , Distrofia Muscular de Duchenne , Humanos , Gatos , Masculino , Animais , Distrofina/genética , Distrofina/análise , Distrofina/metabolismo , Medicina de Precisão/veterinária , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Sequenciamento Completo do Genoma/veterinária , DNA , Doenças do Gato/diagnóstico , Doenças do Gato/genética
2.
AAPS J ; 25(1): 12, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539515

RESUMO

Duchenne muscular dystrophy (DMD) is a degenerative muscular disease affecting roughly one in 5000 males at birth. The disease is often caused by inherited X-linked recessive pathogenic variants in the dystrophin gene, but may also arise from de novo mutations. Disease-causing variants include nonsense, out of frame deletions or duplications that result in loss of dystrophin protein expression. There is currently no cure for DMD and the few treatment options available aim at slowing muscle degradation. New advances in gene therapy and understanding of dystrophin (DYS) expression in other muscular dystrophies have opened new opportunities for treatment. Therefore, reliable methods are needed to monitor dystrophin expression and assess the efficacy of new therapies for muscular dystrophies such as DMD and Becker muscular dystrophy (BMD). Here, we describe the validation of a novel Western blot (WB) method for the quantitation of mini-dystrophin protein in human skeletal muscle tissues that is easy to adopt in most laboratory settings. This WB method was assessed through precision, accuracy, selectivity, dilution linearity, stability, and repeatability. Based on mini-DYS standard performance, the assay has a dynamic range of 0.5-15 ng protein (per 5 µg total protein per lane), precision of 3.3 to 25.5%, and accuracy of - 7.5 to 3.3%. Our stability assessment showed that the protein is stable after 4 F/T cycles, up to 2 h at RT and after 7 months at - 70°C. Furthermore, our WB method was compared to the results from our recently published LC-MS method. Workflow for our quantitative WB method to determine mini-dystrophin levels in muscle tissues (created in Biorender.com). Step 1 involves protein extraction from skeletal muscle tissue lysates from control, DMD, or BMD biospecimen. Step 2 measures total protein concentrations. Step 3 involves running gel electrophoresis with wild-type dystrophin (wt-DYS) from muscle tissue extracts alongside mini-dystrophin STD curve and mini-DYS and protein normalization with housekeeping GAPDH.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Masculino , Recém-Nascido , Humanos , Distrofina/genética , Distrofina/análise , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Biópsia , Western Blotting
3.
Neuropathol Appl Neurobiol ; 48(3): e12785, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34847621

RESUMO

AIMS: Dystrophin, the protein product of the DMD gene, plays a critical role in muscle integrity by stabilising the sarcolemma during contraction and relaxation. The DMD gene is vulnerable to a variety of mutations that may cause complete loss, depletion or truncation of the protein, leading to Duchenne and Becker muscular dystrophies. Precise and reproducible dystrophin quantification is essential in characterising DMD mutations and evaluating the outcome of efforts to induce dystrophin through gene therapies. Immunofluorescence microscopy offers high sensitivity to low levels of protein expression along with confirmation of localisation, making it a critical component of quantitative dystrophin expression assays. METHODS: We have developed an automated and unbiased approach for precise quantification of dystrophin immunofluorescence in muscle sections. This methodology uses microscope images of whole-tissue sections stained for dystrophin and spectrin to measure dystrophin intensity and the proportion of dystrophin-positive coverage at the sarcolemma of each muscle fibre. To ensure objectivity, the thresholds for dystrophin and spectrin are derived empirically from non-sarcolemmal signal intensity within each tissue section. Furthermore, this approach is readily adaptable for measuring fibre morphology and other tissue markers. RESULTS: Our method demonstrates the sensitivity and reproducibility of this quantification approach across a wide range of dystrophin expression in both dystrophinopathy patient and healthy control samples, with high inter-operator concordance. CONCLUSION: As efforts to restore dystrophin expression in dystrophic muscle bring new potential therapies into clinical trials, this methodology represents a valuable tool for efficient and precise analysis of dystrophin and other muscle markers that reflect treatment efficacy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Biópsia , Distrofina/análise , Imunofluorescência , Humanos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Reprodutibilidade dos Testes
4.
J Neuropathol Exp Neurol ; 80(10): 955-965, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34498054

RESUMO

Duchenne muscular dystrophy (DMD) is an incurable disease caused by out-of-frame DMD gene deletions while in frame deletions lead to the milder Becker muscular dystrophy (BMD). In the last decade several antisense oligonucleotides drugs have been developed to induce a partially functional internally deleted dystrophin, similar to that produced in BMD, and expected to ameliorate the disease course. The pattern of dystrophin expression and functionality in dystrophinopathy patients is variable due to multiple factors, such as molecular functionality of the dystrophin and its distribution. To benchmark the success of therapeutic intervention, a clear understanding of dystrophin expression patterns in dystrophinopathy patients is vital. Recently, several groups have used innovative techniques to quantify dystrophin in muscle biopsies of children but not in patients with milder BMD. This study reports on dystrophin expression using both Western blotting and an automated, high-throughput, image analysis platform in DMD, BMD, and intermediate DMD/BMD skeletal muscle biopsies. Our results found a significant correlation between Western blot and immunofluorescent quantification indicating consistency between the different methodologies. However, we identified significant inter- and intradisease heterogeneity of patterns of dystrophin expression in patients irrespective of the amount detected on blot, due to variability in both fluorescence intensity and dystrophin sarcolemmal circumference coverage. Our data highlight the heterogeneity of the pattern of dystrophin expression in BMD, which will assist the assessment of dystrophin restoration therapies.


Assuntos
Distrofina/biossíntese , Imagem Molecular/métodos , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Adolescente , Criança , Pré-Escolar , Distrofina/análise , Distrofina/genética , Feminino , Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Distrofia Muscular de Duchenne/genética
5.
Sci Rep ; 11(1): 1128, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441839

RESUMO

Emerging and promising therapeutic interventions for Duchenne muscular dystrophy (DMD) are confounded by the challenges of quantifying dystrophin. Current approaches have poor precision, require large amounts of tissue, and are difficult to standardize. This paper presents an immuno-mass spectrometry imaging method using gadolinium (Gd)-labeled anti-dystrophin antibodies and laser ablation-inductively coupled plasma-mass spectrometry to simultaneously quantify and localize dystrophin in muscle sections. Gd is quantified as a proxy for the relative expression of dystrophin and was validated in murine and human skeletal muscle sections following k-means clustering segmentation, before application to DMD patients with different gene mutations where dystrophin expression was measured up to 100 µg kg-1 Gd. These results demonstrate that immuno-mass spectrometry imaging is a viable approach for pre-clinical to clinical research in DMD. It rapidly quantified relative dystrophin in single tissue sections, efficiently used valuable patient resources, and may provide information on drug efficacy for clinical translation.


Assuntos
Distrofina/análise , Distrofia Muscular de Duchenne/metabolismo , Músculo Quadríceps/química , Adolescente , Idoso de 80 Anos ou mais , Animais , Criança , Distrofina/genética , Distrofina/imunologia , Feminino , Imunofluorescência , Gadolínio , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Fibras Musculares Esqueléticas/química , Distrofia Muscular de Duchenne/genética , Mutação
6.
J Hum Genet ; 65(10): 903-909, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32504006

RESUMO

Becker muscular dystrophy (BMD) is caused by specific mutations in the DMD gene that causes progressive muscle weakness and primarily affects skeletal and cardiac muscle. Although cardiac involvement is a significant cause of mortality in BMD, the genetic-phenotype correlation for skeletal and cardiac muscles has not been elucidated. Here, we described a 39-year-old man with BMD, who presented with subtle skeletal muscle weakness in the right leg in his 20s and underwent left ventricular restoration for severe dilated cardiomyopathy at the age of 29. He had difficulty climbing stairs after the age of 35. Neither duplication nor deletion of exons was detected by multiplex ligation-dependent probe amplification. A hemizygous c.264 + 1G>A mutation in intron 4 of the DMD was identified by next-generation sequencing. Furthermore, exon 4 skipping of the DMD was confirmed in both skeletal and cardiac muscles evaluated by reverse transcriptase PCR. Endomyocardial and skeletal muscle biopsies revealed dystrophic pathology characterized by muscle fiber atrophy and hypertrophy with a mild degree of interstitial fibrosis. Interestingly, dystrophin immunohistochemistry demonstrated patchy and faint staining of the skeletal muscle membranes but almost normal staining of the cardiac muscle membranes. Western blot analysis revealed a decreased amount of truncated dystrophin in skeletal muscle but surprisingly almost normal amount in cardiac muscle. This case indicates that BMD patients may have severe cardiac dysfunction despite preserved cardiac truncated dystrophin expression.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Miocárdio/patologia , Mutação Puntual , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Adulto , Códon sem Sentido , Distrofina/análise , Distrofina/biossíntese , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons/genética , Masculino , Músculo Esquelético/química , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Miocárdio/química , Linhagem , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
7.
Acta Neuropathol Commun ; 8(1): 53, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303261

RESUMO

The primary molecular endpoint for many Duchenne muscular dystrophy (DMD) clinical trials is the induction, or increase in production, of dystrophin protein in striated muscle. For accurate endpoint analysis, it is essential to have reliable, robust and objective quantification methodologies capable of detecting subtle changes in dystrophin expression. In this work, we present further development and optimisation of an automated, digital, high-throughput script for quantitative analysis of multiplexed immunofluorescent (IF) whole slide images (WSI) of dystrophin, dystrophin associated proteins (DAPs) and regenerating myofibres (fetal/developmental myosin-positive) in transverse sections of DMD, Becker muscular dystrophy (BMD) and control skeletal muscle biopsies. The script enables extensive automated assessment of myofibre morphometrics, protein quantification by fluorescence intensity and sarcolemmal circumference coverage, colocalisation data for dystrophin and DAPs and regeneration at the single myofibre and whole section level. Analysis revealed significant variation in dystrophin intensity, percentage coverage and amounts of DAPs between differing DMD and BMD samples. Accurate identification of dystrophin via a novel background subtraction method allowed differential assessment of DAP fluorescence intensity within dystrophin positive compared to dystrophin negative sarcolemma regions. This enabled surrogate quantification of molecular functionality of dystrophin in the assembly of the DAP complex. Overall, the digital script is capable of multiparametric and unbiased analysis of markers of myofibre regeneration and dystrophin in relation to key DAPs and enabled better characterisation of the heterogeneity in dystrophin expression patterns seen in BMD and DMD alongside the surrogate assessment of molecular functionality of dystrophin. Both these aspects will be of significant relevance to ongoing and future DMD and other muscular dystrophies clinical trials to help benchmark therapeutic efficacy.


Assuntos
Proteínas Associadas à Distrofina/análise , Distrofina/análise , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Distrofias Musculares , Criança , Pré-Escolar , Imunofluorescência , Humanos , Masculino , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Sarcolema/metabolismo , Sarcolema/patologia , Sarcômeros/metabolismo , Sarcômeros/patologia
8.
Mil Med ; 185(Suppl 1): 423-429, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32074337

RESUMO

INTRODUCTION: The aim of this study was to quantify the extent of donor-cell-derived myogenesis achieved by a novel surgical technique known as Minimally Invasive Muscle Embedding (MIME). MATERIALS AND METHODS: Through MIME, we implanted a single extensor digitorum longus muscle from donor mice (N = 2) that expressed a red fluorescent protein (RFP), into the left tibialis anterior (TA) muscle of immunodeficient host mice (N = 4) that expressed a green fluorescent protein (GFP). Soon after MIME, we injected a myotoxin (barium chloride), into the host TA muscle, to trigger concerted muscle degeneration and regeneration. In lieu of MIME, we performed a SHAM procedure on the right TA muscle of the same set of animals. RESULTS: In MIME-treated muscles, 22% ± 7% and 78% ± 7% muscle fibers were RFP+ and GFP+, respectively (mean ± standard deviation); and all RFP+ fibers were positive for desmin and dystrophin. Conclusion. We conclude that MIME helps generate muscle fibers of donor origin, in host muscle.


Assuntos
Desmina/análise , Distrofina/análise , Fibras Musculares Esqueléticas/transplante , Inclusão do Tecido/métodos , Animais , Modelos Animais de Doenças , Camundongos , Camundongos SCID , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Inclusão do Tecido/estatística & dados numéricos
9.
Angiogenesis ; 23(2): 79-82, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31993832

RESUMO

Aging is associated with a progressive decline in muscle mass, strength, and quality. We have previously demonstrated the important role of the blood vasculature system in ultraviolet (UV) light-induced changes in skin and its molecular mechanisms. Whereas recent findings revealed structural alterations of the cutaneous vasculature in aged and photoaged human skin, structural changes of blood vessels in skeletal muscles with age have remained unclear. Although, facial skeletal muscles could be involved in skin-aging, here, we show-for the first time-that, in the lateral great muscle, the cross-sectional muscle fiber area and vessels size were decreased in older skin compared with that in younger skin. In the orbicularis oculi muscle, no significant interaction between age and the muscle fiber area was observed. However, a significantly decreased ratio of muscle area was indicated in older skin compared with that in younger skin. Interestingly, the pericyte-covered vessels ratio was decreased in older skin. Therefore, we found that the skeletal muscle capillary destabilizes with age. In summary, we revealed that the lateral great muscle and the orbicularis oculi muscle fibers become thinner with age due to the destabilization of skeletal muscle capillaries. Therapeutic targeting of muscle capillaries might affect the decline of skeletal muscles with age and could potentially regulate muscle/skin-aging.


Assuntos
Envelhecimento/fisiologia , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/irrigação sanguínea , Adulto , Anatomia Transversal , Capilares/anatomia & histologia , Capilares/citologia , Capilares/metabolismo , Estudos de Casos e Controles , Distrofina/análise , Distrofina/metabolismo , Imunofluorescência , Humanos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Adulto Jovem
10.
J Mass Spectrom ; 55(2): e4437, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31502334

RESUMO

The need for a reliable and accurate method to quantify dystrophin proteins in human skeletal muscle biopsies has become crucial in order to assess the efficacy of dystrophin replacement therapies in Duchenne muscular dystrophy as well as to gain insight into the relationship between dystrophin levels and disease severity in Becker's muscular dystrophy. Current methods to measure dystrophin such as western blot and immunofluorescence, while straightforward and simple, lack precision and sometimes specificity. Here, we standardized a targeted mass spectrometry method to determine the absolute amount of dystrophin in ng/mg of muscle using full-length 13 C6-Arg- and 13 C6,15 N2-Lys-labeled dystrophin and parallel reaction monitoring (PRM). The method was found to be reproducible with a limit of quantification as low as 30 pg of dystrophin protein per mg of total muscle proteins. The method was then tested to measure levels of dystrophin in muscle biopsies from a healthy donor and from Duchenne and Becker's muscular dystrophy patients.


Assuntos
Distrofina/análise , Espectrometria de Massas/métodos , Músculo Esquelético/química , Biópsia , Linhagem Celular , Humanos , Modelos Lineares , Fibras Musculares Esqueléticas/química , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Int J Mol Sci ; 20(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795399

RESUMO

Status epilepticus (a prolonged seizure activity, SE) differently affects vasogenic edema formation and dystrophin-aquaporin 4 (AQP4) expressions between the rat hippocampus and the piriform cortex (PC). In the present study, we explored whether the 67-kDa laminin receptor (LR) expression was relevant to the regional specific susceptibility of vasogenic edema at 3 days after SE. In spite of no difference in expression levels of 67-kDa LR, dystrophin, and AQP4 under physiological conditions, SE-induced serum extravasation was more severe in the PC than the hippocampus. Western blots demonstrated that SE reduced expression levels of 67-kDa LR, dystrophin, and AQP4 in the PC, but not in the hippocampus proper. Immunofluorescent studies revealed that SE increased 67-kDa LR expression in reactive CA1 astrocyte, but reduced it in the PC and the molecular layer of the dentate gyrus due to massive astroglial loss. Furthermore, SE decreased expressions of endothelial 67-kDa LR and SMI-71 (endothelial brain barrier antigen) in these regions. The 67-kDa LR neutralization evoked serum extravasation in these regions of normal animals without astroglial loss. Similar to SE, 67-kDa LR neutralization also reduced dystrophin-AQP4 expressions in the PC more than the total hippocampus. Furthermore, 67-kDa LR IgG infusion increased phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), but not c-Jun N-terminal kinase, independent of phosphoprotein enriched in astrocytes of 15 kDa (PEA15) activity. Co-treatment of U0126 (an ERK1/2 inhibitor) alleviated vasogenic edema formation and the reduced dystrophin-AQP4 expressions induced by 67-kDa LR neutralization. The 67-kDa LR IgG infusion also increased the susceptibility to SE induction. Therefore, our findings suggested that the cellular specific alterations in 67-kDa LR expression might be involved in the severity of SE-induced vasogenic edema formation in regional specific manners, which might affect the susceptibility to SE induction.


Assuntos
Astrócitos/patologia , Barreira Hematoencefálica/patologia , Células Endoteliais/patologia , Receptores de Laminina/análise , Estado Epiléptico/patologia , Animais , Aquaporina 4/análise , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Distrofina/análise , Distrofina/metabolismo , Células Endoteliais/metabolismo , Masculino , Ratos Sprague-Dawley , Receptores de Laminina/metabolismo , Estado Epiléptico/metabolismo
12.
Biomark Med ; 13(14): 1209-1225, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31379197

RESUMO

Aim: Detection of drug-induced dystrophin in patient muscle biopsy is a surrogate outcome measure for Duchenne muscular dystrophy. We sought to establish and validate an orthogonal approach to measurement of dystrophin protein and RNA in muscle biopsies. Materials & methods: Validated methods were developed for dystrophin western blotting, mass spectrometry, immunostaining and reverse transcriptase PCR of biopsy mRNA using muscle biopsy standards. Results: Both western blotting and mass spectrometry validated methods demonstrated good linearity, and acceptable precision and accuracy with a lower limit of quantitation at 1%. Immunostaining and reverse transcriptase PCR methods were shown to be reliable. Conclusion: The described orthogonal approach is sufficient to support measures of dystrophin as a surrogate outcome in a clinical trial.


Assuntos
Descoberta de Drogas , Distrofina/análise , Biópsia , Western Blotting , Éxons/genética , Humanos , Espectrometria de Massas , RNA Mensageiro/análise
13.
Arch Pathol Lab Med ; 143(2): 197-205, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30168727

RESUMO

CONTEXT.­: Duchenne muscular dystrophy is a rare, progressive, and fatal neuromuscular disease caused by dystrophin protein loss. Common investigational treatment approaches aim at increasing dystrophin expression in diseased muscle. Some clinical trials include assessments of novel dystrophin production as a surrogate biomarker of efficacy, which may predict a clinical benefit from treatment. OBJECTIVES.­: To establish an immunofluorescent scanning and digital image analysis workflow that provides an objective approach for staining intensity assessment of the immunofluorescence dystrophin labeling and determination of the percentage of biomarker-positive fibers in muscle cryosections. DESIGN.­: Optimal and repeatable digital image capture was achieved by a rigorously qualified fluorescent scanning process. After scanning qualification, the MuscleMap (Flagship Biosciences, Westminster, Colorado) algorithm was validated by comparing high-power microscopic field total and dystrophin-positive fiber counts obtained by trained pathologists to data derived by MuscleMap. Next, the algorithm was tested on whole-slide images of immunofluorescent-labeled muscle sections from Duchenne muscular dystrophy, Becker muscular dystrophy, and control patients. RESULTS.­: When used under the guidance of a trained pathologist, the digital image analysis tool met predefined validation criteria and demonstrated functional and statistical equivalence with manual assessment. This work is the first, to our knowledge, to qualify and validate immunofluorescent scanning and digital tissue image-analysis workflow, respectively, with the rigor required to support the clinical trial environments. CONCLUSIONS.­: MuscleMap enables analysis of all fibers within an entire muscle biopsy section and provides data on a fiber-by-fiber basis. This will allow future clinical trials to objectively investigate myofibers' dystrophin expression at a greater level of consistency and detail.


Assuntos
Distrofina/análise , Interpretação de Imagem Assistida por Computador/métodos , Distrofia Muscular de Duchenne/diagnóstico , Adolescente , Biópsia , Criança , Pré-Escolar , Feminino , Secções Congeladas , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia
14.
Biomaterials ; 198: 259-269, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180985

RESUMO

In vitro models of contractile human skeletal muscle hold promise for use in disease modeling and drug development, but exhibit immature properties compared to native adult muscle. To address this limitation, 3D tissue-engineered human muscles (myobundles) were electrically stimulated using intermittent stimulation regimes at 1 Hz and 10 Hz. Dystrophin in myotubes exhibited mature membrane localization suggesting a relatively advanced starting developmental maturation. One-week stimulation significantly increased myobundle size, sarcomeric protein abundance, calcium transient amplitude (∼2-fold), and tetanic force (∼3-fold) resulting in the highest specific force generation (19.3mN/mm2) reported for engineered human muscles to date. Compared to 1 Hz electrical stimulation, the 10 Hz stimulation protocol resulted in greater myotube hypertrophy and upregulated mTORC1 and ERK1/2 activity. Electrically stimulated myobundles also showed a decrease in fatigue resistance compared to control myobundles without changes in glycolytic or mitochondrial protein levels. Greater glucose consumption and decreased abundance of acetylcarnitine in stimulated myobundles indicated increased glycolytic and fatty acid metabolic flux. Moreover, electrical stimulation of myobundles resulted in a metabolic shift towards longer-chain fatty acid oxidation as evident from increased abundances of medium- and long-chain acylcarnitines. Taken together, our study provides an advanced in vitro model of human skeletal muscle with improved structure, function, maturation, and metabolic flux.


Assuntos
Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/fisiologia , Mioblastos/citologia , Engenharia Tecidual/métodos , Adolescente , Adulto , Células Cultivadas , Criança , Distrofina/análise , Distrofina/metabolismo , Estimulação Elétrica , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Contração Muscular , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/citologia , Mioblastos/metabolismo , Engenharia Tecidual/instrumentação , Adulto Jovem
15.
Sci Rep ; 8(1): 5794, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643396

RESUMO

Muscle ischaemia is frequently induced intraoperatively by i.e. a surgical tourniquet or during the re-grafting phase of a free muscle transplant. The resulting muscle cell damage may impact on postoperative recovery. Neuromuscular paralysis may mitigate the effects of ischaemia. After ethics approval, 25 male Sprague-Dawley rats were anaesthetized and randomly assigned to 1 of 4 groups: Sham operation, treatment with normal saline, treatment with rocuronium (muscle relaxant) 0.6 or 1 mg kg-1, respectively. In the non-sham groups, ischaemia of one hind leg was achieved by ligation of the femoral vessels. Muscle biopsies were taken at 30 and 90 min, respectively. Cell damage was assessed in the biopsies via the expression of dystrophin, free calcium, as well as the assessment of cell viability. Pre-ischaemia muscle relaxation led to a reduction in ischaemia-induced muscle cell damage when measured by the expression of dystrophin, cell viability and the expression of free calcium even after 90 min of ischaemia (i.e. ratio control/ischaemic site for dystrophin expression after saline 0.58 ± 0.12 vs. after 1 mg/kg rocuronium 1.08 ± 0.29; P < 0.05). Muscle relaxation decreased the degree of ischaemia-induced muscle cell damage. The results may have significant clinical implications.


Assuntos
Isquemia/patologia , Músculo Esquelético/efeitos dos fármacos , Fármacos Neuromusculares/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Rocurônio/administração & dosagem , Animais , Biópsia , Sobrevivência Celular , Distrofina/análise , Histocitoquímica , Músculo Esquelético/patologia , Ratos Sprague-Dawley , Resultado do Tratamento
16.
Neuropathol Appl Neurobiol ; 44(5): 463-473, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29086434

RESUMO

AIMS: New therapies for neuromuscular disorders are often mutation specific and require to be studied in patient's cell cultures. In Duchenne muscular dystrophy (DMD) dystrophin restoration drugs are being developed but as muscle cell cultures from DMD patients are scarce and do not grow or differentiate well, only a limited number of candidate drugs are tested. Moreover, dystrophin quantification by western blotting requires a large number of cultured cells; so fewer compounds are as thoroughly screened as is desirable. We aimed to develop a quantitative assessment tool using fewer cells to contribute in the study of dystrophin and to identify better drug candidates. METHODS: An 'in-cell western' assay is a quantitative immunofluorescence assay performed in cell culture microplates that allows protein quantification directly in culture, allowing a higher number of experimental repeats and throughput. We have optimized the assay ('myoblot') to be applied to the study of differentiated myoblast cultures. RESULTS: After an exhaustive optimization of the technique to adapt it to the growth and differentiation rates of our cultures and the low intrinsic expression of our proteins of interests, our myoblot protocol allows the quantification of dystrophin and other muscle-associated proteins in muscle cell cultures. We are able to distinguish accurately between the different sets of patients based on their dystrophin expression and detect dystrophin restoration after treatment. CONCLUSIONS: We expect that this new tool to quantify muscle proteins in DMD and other muscle disorders will aid in their diagnosis and in the development of new therapies.


Assuntos
Western Blotting/métodos , Distrofina/análise , Imunofluorescência , Distrofia Muscular de Duchenne , Mioblastos , Técnicas de Cultura de Células/métodos , Humanos
17.
J Neuromuscul Dis ; 3(1): 77-90, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-27854205

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder primarily affecting males. This disorder is caused by mutations in the DMD gene that abolish dystrophin protein function. Many therapeutic approaches for DMD aim at recovery of the dystrophin protein in muscle fibers of affected patients, rendering accurate dystrophin quantification important. Several methods have been reported to detect and quantify dystrophin restoration in preclinical and clinical trials. We here evaluated the applicability of dystrophin specific enzyme-linked immunosorbent assays (ELISA) and a TaqMan protein assay, benchmarking them against Western blotting analysis. Despite numerous optimization attempts, in our hands the background signals in the ELISA and TaqMan protein assays were too high to allow dystrophin quantification. By contrast, the Western blot approach was able to detect dystrophin levels as low as 0.2% in a reproducible manner. We provide a Western blot protocol that allows sensitive and accurate dystrophin quantification in preclinical studies.


Assuntos
Western Blotting/normas , Distrofina/análise , Imunoensaio/normas , Músculo Esquelético/química , Distrofia Muscular de Duchenne/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Sensibilidade e Especificidade
18.
Oncotarget ; 7(33): 53702-53711, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27449096

RESUMO

For the first time, dramatically decreased Dp71 protein and mRNA was found in 34 pairs of resected primary gastric adenocarcinoma. Immunohistochemistry identified Dp71 expression suppressed in 72.2% of 104 gastric cancer patients. The decreased Dp71 expression was significantly correlated with cancer differentiation (P=0.001) and lymph vascular invasion (p=0.041). Decreased Dp71 expression was associated with a poor gastric adenocarcinoma prognosis (P=0.001). Significantly less Dp71 mRNA and protein were found in BGC823, SGC7901, AGS compared with GES-1. Via increasing lamin B1 mRNA and protein, enforced Dp71d and Dp71f expression resulted in SGC7901 proliferation inhibition. Co-IP proved interaction of Dp71 with lamin B1 in GES-1 cells. Further expression characterization showed reduced lamin B1 in gastric cancer tissue and cancer cells. Increasing lamin B1 expression results in the growth inhibition of SGC7901, which suggests that Dp71-lamin B1 protein complex plays an important role for the newly identified tumor suppressive function of Dp71.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/análise , Distrofina/biossíntese , Neoplasias Gástricas/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adulto , Idoso , Distrofina/análise , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade
19.
Histochem Cell Biol ; 146(3): 301-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27109495

RESUMO

The dystrophin gene consists of 79 exons and encodes tissue-specific isoforms. Mutations in the dystrophin gene cause Duchenne muscular dystrophy, of which a substantial proportion of cases are complicated by non-progressive mental retardation. Abnormalities of Dp71, an isoform transcribed from a promoter in intron 62, are a suspected cause of mental retardation. However, the roles of Dp71 in human brain have not been fully elucidated. Here, we characterized dystrophin in human HEK293 cells with the neuronal lineage. Reverse transcription-PCR amplification of the full-length dystrophin transcript revealed the absence of fragments covering the 5' part of the dystrophin cDNA. In contrast, fragments covering exons 64-79 were present. The Dp71 promoter-specific exon G1 was shown spliced to exon 63. We demonstrated that the Dp71 transcript comprised two subisoforms: one lacking exon 78 (Dp71b) and the other lacking both exons 71 and 78 (Dp71ab). Western blotting of cell lysates using an antibody against the dystrophin C-terminal region revealed two bands, corresponding to Dp71b and Dp71ab. Immunohistochemical examination with the dystrophin antibody revealed scattered punctate signals in the cytoplasm and the nucleus. Western blotting revealed one band corresponding to Dp71b in the cytoplasm and two bands corresponding to Dp71b and Dp71ab in the nucleus, with Dp71b being predominant. These results indicated that Dp71ab is a nucleus-specific subisoform. We concluded that Dp71, comprising Dp71b and Dp71ab, was expressed exclusively in HEK293 cells and that Dp71ab was specifically localized to the nucleus. Our findings suggest that Dp71ab in the nucleus contributes to the diverse functions of HEK293 cells.


Assuntos
Núcleo Celular/metabolismo , Distrofina/genética , Distrofina/metabolismo , Distrofina/análise , Células HEK293 , Humanos , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
20.
PLoS One ; 11(1): e0145620, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26745801

RESUMO

Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Animais , Células Cultivadas , Criança , Modelos Animais de Doenças , Distrofina/análise , Éxons , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distrofia Muscular de Duchenne/patologia , Oligonucleotídeos Antissenso/metabolismo , Fenótipo , RNA/química , RNA/metabolismo , Splicing de RNA , Análise de Sequência de RNA , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...